Physics 371 Spring 2017 Prof. Anlage Modern Physics Review

JJ Thomson charge-to-mass measurement in E, B fields: $q / m=\frac{v}{R B}$.
Millikan oil droplet experiment: revealed the quantization of electric charge.
Blackbody radiation, Stefan-Boltzmann law: $R_{\text {Total }}=\sigma T^{4}, \sigma=5.6703 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}^{4}}$. Wien displacement law says that $\lambda_{\max } T=2.898 \times 10^{-3} \mathrm{~m}-K$.
Radiation power per unit area related to the energy density of a blackbody: $R(\lambda)=$ $\frac{c}{4} \rho(\lambda)$.
Rayleigh-Jeans (classical equipartition argument) law $\rho(\lambda)=8 \pi k_{B} T / \lambda^{4}$ leads to the 'ultraviolet catastrophe’.
Planck blackbody radiation (treat the atoms as having discrete energy states, and the light as having energy $E=h f$): $\rho(\lambda)=\frac{8 \pi h c / \lambda^{5}}{e^{h c / \lambda B_{B} T}-1}, h=6.626 \times 10^{-34} J-s$.

Photoelectric effect and the concept of light as a particle (photon with $E=h f$): $h f=$ $e V_{0}+\phi$. Photon collides with one electron and transfers all of its energy, $-V_{0}$ is the stopping potential.

X-ray production by Bremsstrahlung with cutoff $\lambda_{\min }=\frac{1240}{V} n m$ (Duane-Hunt Rule), explained by Einstein as inverse photoemission with $\lambda_{\min }=\frac{h c}{e V}$. Sharp emission lines arise from quantized energy levels in the 'core shells' of atoms.
Bragg reflection of x-rays from layers of atoms in crystals: $n \lambda=2 d \sin \theta$, where $n=1,2,3, \ldots, d$ is the spacing between the parallel layers.

Rutherford scattering (Phys 410) suggested that positive charge is concentrated in a very small volume - the nuclear model of the atom.

Empirical rule for light emission from hydrogen $\frac{1}{\lambda_{m n}}=R\left(\frac{1}{m^{2}}-\frac{1}{n^{2}}\right)$, Rydberg constant $R=R_{H}=1.096776 \times 10^{7} \frac{1}{m}$ for Hydrogen.
Bohr model of the hydrogen atom (assumes stationary states, light comes from transitions between stationary states, electron angular momentum in circular orbits is quantized): $|\vec{L}|=|\vec{r} \times m \vec{v}|=m v r=n \hbar$, with $n=1,2,3, \ldots, \quad$ Radius of circular orbits: $r_{n}=\frac{n^{2} a_{0}}{z}$ with $a_{0}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m e^{2}}=0.529 \AA$, Total energy of Hydrogen atom: $E_{n}=-E_{0} \frac{Z^{2}}{n^{2}}$, with $E_{0}=\frac{m c^{2}\left(e^{2} / 4 \pi \varepsilon_{0}\right)^{2}}{2(\hbar c)^{2}}=\frac{m c^{2}}{2} \alpha^{2}=13.6 \mathrm{eV}, \alpha=\frac{e^{2} / 4 \pi \varepsilon_{0}}{\hbar c} \cong \frac{1}{137}$ is called the 'fine structure constant'. Explains the Hydrogen atom emission spectrum but not multi-electron atoms.

Davisson-Germer experiment shows that matter (electrons) diffract from periodic structures (Ni atoms on a surface) like waves. It is clear that matter has a strong wavelike character when measured under appropriate conditions.
deBroglie proposed the wavelength of matter waves as $\lambda_{d B}=h / p$, where p is the linear momentum. Classical physics should be recovered in the short- $\lambda_{d B}$ limit - the Correspondence Principle

The time-dependent Schrodinger equation: $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+V(x, t) \Psi(x, t)=i \hbar \frac{\partial \Psi(x, t)}{\partial t}$; Separation of variables leads to $\Psi(x, t)=\psi(x) e^{-i E t / \hbar}$ (a property of stationary states);
Time-independent Schrodinger equation: $-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E \psi(x)$;
The wavefunction $\Psi(x, t)$ is complex in general and cannot be measured. Born interpretation of the wave function in terms of a probability density $P(x, t)=$ $\Psi^{*}(x, t) \Psi(x, t)$;
Normalization condition: $\int_{-\infty}^{+\infty}|\psi(x)|^{2} d x=1$.
Particle of mass m in an infinite square well between $x=0$ and $x=L: E_{n}=\frac{\hbar^{2} k_{n}{ }^{2}}{2 m}=$ $n^{2} \frac{\pi^{2} \hbar^{2}}{2 m L^{2}}$ with $n=1,2,3, \ldots$, and $\psi_{n}(x)=\sqrt{2 / L} \sin k_{n} x$.
Finite square well of height V_{0}, energy eigenvalues are solutions of the transcendental equation: $\tan \left(\frac{\sqrt{2 m E}}{\hbar} a\right)=\sqrt{\frac{V_{0}-E}{E}}$ (even parity solutions). Always at least one solution!

Harmonic oscillator: $-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+\frac{1}{2} m \omega^{2} x^{2} \psi(x)=E \psi(x), E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$, where $n=0,1,2,3, \ldots$, Eigenfunctions: $\psi_{n}(x)=C_{n} e^{-m \omega^{2} x^{2} / 2 \hbar} H_{n}(x)$, involve the Hermite polynomials multiplying a Gaussian in x.
Classical turning points are inflection points in $\psi(x)$.
General wave uncertainty properties: $(\Delta x)(\Delta k) \geq 1 / 2$, $(\Delta t)(\Delta \omega) \geq 1 / 2$.
Quantum uncertainty properties: $(\Delta x)(\Delta p) \geq \hbar / 2,(\Delta t)(\Delta E) \geq \hbar / 2$.
Expectation values: $\langle x\rangle=\int_{-\infty}^{\infty} \Psi^{*}(x, t) x \Psi(x, t) d x$, and for any function of position: $\langle f(x)\rangle=\int_{-\infty}^{\infty} \Psi^{*}(x, t) f(x) \Psi(x, t) d x$

Linear momentum operator: $p_{o p}=-i \hbar \frac{\partial}{\partial x}$, Hamiltonian operator: $\mathcal{H}_{o p}=\frac{p_{o p}{ }^{2}}{2 m}+V(x)$, the time independent Schrodinger equation written as an operator equation: $\mathcal{H}_{o p} \psi(x)=$ $E \psi(x)$.

Step potential $V(x)=\left\{\begin{array}{cc}0 & \text { for } x<0 \\ V_{0} & \text { for } x>0\end{array}\right.$ has reflection rate $R=\left(\frac{k_{1}-k_{2}}{k_{1}+k_{2}}\right)^{2}$, and transmission rate $T=\frac{4 k_{1} k_{2}}{\left(k_{1}+k_{2}\right)^{2}}$, where $k_{1}=\sqrt{2 m E} / \hbar$ and $k_{2}=\sqrt{2 m\left(E-V_{0}\right)} / \hbar$.

Tunneling rate through a barrier $T=\left[1+\frac{\sinh ^{2}(\alpha a)}{4 \frac{E}{V_{0}}\left(1-\frac{E}{V_{0}}\right)}\right]^{-1} \approx 16 \frac{E}{V_{0}}\left(1-\frac{E}{V_{0}}\right) e^{-2 \alpha a}$, where a is the barrier width, and $\alpha=\sqrt{2 m\left(V_{0}-E\right)} / \hbar$.

